

2023 NDIA MICHIGAN CHAPTER
GROUND VEHICLE SYSTEMS ENGINEERING

AND TECHNOLOGY SYMPOSIUM
MODULAR OPEN SYSTEMS ARCHITECTURE TECHNICAL SESSION

AUGUST 15-17, 2023 - NOVI, MICHIGAN

Using FACETM Technical Standard Features to Address
Interoperability Between Ground Vehicle Domain Open Standards

Mark Snyder1

Chris Allport2

1L3Harris, Palm Bay, FL
2Skayl, Westminster, MD

ABSTRACT
This paper offers a technical strategy to use Future Airborne Capability

Environment™ (FACE Data Modeling and Transport Services Segment (TSS)

mechanisms to address interoperability concerns between multiple open standards.

It discusses features of the FACE Technical Standard that facilitate interoperability

including data modeling constructs to address various common digital schema

technologies, TSS capability approaches to allow flexible interoperability, and

open standards that can be addressed with the approach.

Citation: M. Snyder, C. Allport “Using FACETM Technical Standard Features to Address Interoperability Between

Ground Vehicle Domain Open Standards,” In Proceedings of the Ground Vehicle Systems Engineering and

Technology Symposium (GVSETS), NDIA, Novi, MI, Aug. 16-18, 2023.

1. INTRODUCTION

Multiple Open Standards have been

developed over many years to help the

ground vehicle domain realize the benefits of

a Modular Open Systems Architecture

(MOSA). Some relevant standards include

The Future Airborne Capability

Environment™ (FACE) [1] and Vehicular

Integration for C4ISR/EW Interoperability

(VICTORY), Robot Operating System

(ROS), Sensor Open Systems Architecture™

(SOSA), and NATO Generic Vehicle

Architecture (NGVA). Technical and

business strategies must be adopted in order

to make Open Standards work together, as

discussed in the prior paper on

FACE/VICTORY interoperability by Elliot,

et al [2].

This white paper discusses specific

technical approaches which can yield an

effective strategy for interoperability

between multiple Open standards, focusing

on features built into the FACE technical

standards designed to enable such

interoperability. In addition to addressing

standards such as VICTORY, we discuss

how to address a much broader set of

standards that include those based on other

datatype-driven interface definition

methodologies.

DISTRIBUTION A. Approved for public release;

distribution unlimited.

Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Using FACETM Technical Standard Features to Address Interoperability…, Snyder, Allport

Page 2 of 11

2. Open Systems Interconnect Model
 The Open Systems Interconnect (OSI)

Model, shown in figure 1 below, is a logical

framework for understanding components

typically used in distributed systems. While

a full understanding of the OSI model is

beyond the scope of this paper, it is beneficial

to understand how each standard typically

relates to the model. This provides a better

understanding of the technologies necessary

to achieve effective interoperability.

The FACE Reference Architecture offers

flexibility in assembling technologies at the

Session, Transport, and Network layers to

achieve performant integrations. VICTORY

offers more flexibility at the application and

presentation layers but is more prescriptive at

the middle layers. Standards implemented

primarily via Data Distribution System

(DDS) and IDL, such as the NGVA standard,

are prescriptive at the middle layers, and tend

to rely on code generation for the

presentation and application layer interfaces.

3. Data Modeling and Architecture

Data modeling for MOSA interoperability

is primarily concerned with defining the

system components’ inputs and outputs. In

general, the goals of data modeling include:

• Bridging the gaps between system

architecture definitions and software

implementation

• Providing an unambiguous definition of

data structure that can be used for various

aspects of the OSI model

• Providing an unambiguous definition of

data semantics, or meaning, including the

characteristics of how data is measured and

reported

Each standard has differing methods of

defining structured data types that may be

considered a ‘data model’. VICTORY and

other XML-driven standards, for example,

are defined using XML schema definitions

(XSDs) for data structures that define

messages. XSDs are a widely used method

of defining structured data that is intended to

be represented using XML. In VICTORY,

the service definitions are described in the

standard and codified by the web-service

description language (WSDL) descriptions as

components, which are roughly analogous to

entities. NGVA, ROS, and others are built on

Data Distribution System (DDS) and use

Object Management Group (OMG) Interface

Definition Language (IDL). IDL also

includes the concept of modules, and service

interfaces that are typically defined using an

API that includes inputs and outputs that

define services.

The FACE Consortium and the Open Group

have defined the Open Universal Domain

Description Language (UDDL) Standard [3]

and UDDL modeling language and FACE

UoP languages that can generate structured

types in various forms. In developing the

UDDL and data modeling approaches, the

objective was to better enable the goals of

data modeling through a more robust

machine interpretable entity model. One

approach to describe the maturity of a data

Figure 1: The OSI Model

Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Using FACETM Technical Standard Features to Address Interoperability…, Snyder, Allport

Page 3 of 11

model is the Interface Documentation

Maturity Levels (IDML), originally proposed

in 2019 by Hand, et al., [4] is shown in Figure

2. The diagram provides a clear summary of

the levels of interface documentation

maturity. However, it is worth emphasizing

the three distinct levels of maturity. Early

maturity represents encompasses traditional

paper-based documentation (or possibly no

documentation at all). Advanced maturity

captures all the current capabilities and

recommended best practices of data

modeling. This leaves the “mid” level of

maturity with the most variance. On the early

side (IDML 3), there exists schemas.

Schemas are syntax-rich but devoid of

semantics. Those that do capture the

meaning of data do so in text that still

requires a human to interpret. IDML 4 is a

significant improvement over the former

since it adds a tremendous amount of

information about the data. Although this

form lacks the full expression of what the

data represents, it carefully captures the

mathematical basis of the data (including, but

not limited to, the units of measure and frame

of reference) and the abstract concepts

(called observable by UDDL) of each field.

Novice data modelers will often complain

about “duplicating work” when building a

FACE data model. This is typically a side-

effect of building an IDML 4 “message

model.” In this style of data model, the data

model elements mirror the applications’

interfaces. This approach duplicates

information in the model and does not require

the powerful decoupling Query/Template

mechanism explained below.

When modelers finally achieve IDML 5,

they have a strong basis for a reusable entity

model. This level exhibits decoupling

between interfaces (messages) and the data

model itself. This is a critical level of data

modeling and the first level of maturity that

really starts to realize the benefits of data

modeling.

Simply put, if messaging standards were

sufficient, all work would have been

complete as soon as NATO Standardisation

[sic] Agreement 4586 was published. How

many standards have emerged since then?

Regardless, countless engineering hours are

directed at integrating these distinct

standards. Therein lies an interesting

observation – they can be integrated. Why?

Although the protocol may differ, although

the units may differ, and although the

messages may differ, all these message sets

talk about the same things. Rather, they all

talk about the same domain, they just do it in

a slightly different way.

This ties back to the discussion about the

OSI Model. Since the data models capture

most (if not all) information about the

domains, it is possible to calculate the

integration between disparate message sets

and delegate messaging, protocol, etc., to the

appropriate level of architecture.

Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Using FACETM Technical Standard Features to Address Interoperability…, Snyder, Allport

Page 4 of 11

4. Data Modeling Relationship to
Software

The relationship of data modeling to

software is the subject of many challenges, as

described by Snyder in a 2021 FACE TIM

paper [5]. In general, a primary challenge is

to maintain the relationship of data

architecture modeling to software

implementations that use it. For example,

FACE portable applications at both the

Portable Component Segment (PCS) and

Platform Specific Services Segment (PSSS)

can be written to standardized Type Specific

(TS) interfaces that derive directly from the

UDDL data model.

Since the UDDL language can be used to

describe any interface in a flexible manner, a

FACE UDDL model becomes the primary

means to describe interfaces throughout a

system. To align with the idea that data

models capture “domains of data,” the FACE

Consortium created a concept of a Domain

Specific Data Model (DSDM) to describe a

more standardized set of interfaces used

throughout a domain of interest (e.g., Ground

Combat Vehicles). Many DSDM definition

efforts are designed to be leveraged by

multiple programs, offering a significant

opportunity for reuse and commonality [6].

A secondary challenge of a data architecture

(DA) is to describe the entity model in a way

that maintains its relationship to data views,

or messages, without its structure and

Figure 2: Interface Documentation Maturity Levels.

Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Using FACETM Technical Standard Features to Address Interoperability…, Snyder, Allport

Page 5 of 11

modularity being driven by messages (IDML

5 and above). In this way, the data model can

capture both semantic meaning and necessary

constructs to enable data transformation and

interoperability. Figure 3 shows how the

UDDL maintains traceability between the

entity and platform views of the data

architecture.

4.1. FACE Features Enable MOSA

The UDDL data architecture includes meta

model elements that are intended to enable

IDML 7 (Entity Model with Relationships)

and decouple the entity/association model

from interface/message representations. The

primary mechanisms that support this are

Queries and Templates. Queries are a

mechanism that links a set of real-world

elements (or entities) and their relationships

(or associations) to describe the context for

data exchanged in a system. It is this

construct that allows a UDDL model to

contain attributes of a described system to

modular entities that are logically separate,

and to express the interfaces as arbitrary

groups of information. For example, the

query below in Figure 4 shows how the

separate attributes of a sensor and a gimbal

are brought together in a single query. The

documentation of the semantic (i.e., the

meaning of the data), if expressed in the

query itself. While not immediately obvious,

it is possible to construct an “English

sentence” from this query structure. In this

case, the query is selecting information from

an EOIR Camera and the gimbal on which it

is installed. The template, on the other hand,

is used to adapt the structure of the query data

to what is needed by the application.

Tool vendors and other engineering

organizations have developed tools to make

the construction of FACE queries and

templates fast, allowing the data model

developer to consider the system context and

not the semantics of the query or template

languages.

Figure 3: UDDL Data Architecture Traceability to Entity Model.

Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Using FACETM Technical Standard Features to Address Interoperability…, Snyder, Allport

Page 6 of 11

The template language is a key part of the

of the FACE Data Architecture to enable

linking entity models to a variety of data

layouts and applying them to multiple open

standards. FACE templates include features

such as sequences (lists of data), unions

(choices of data), optional fields, renaming

fields, and nested structures. These features

allow templates to be defined that allow data

definitions to closely match the features

found in other standards (i.e., XSD or IDL).

In essence, the template can match an

intended format that can be related to another

standard while the query links the template to

the underlying entity definition. This is a key

ability that allows non-FACE Data

Architecture definitions to be described using

FACE means, potentially via a reverse

engineering process. Because the UDDL

standard includes entities/associations and

Figure 4: Example Query/Template.

Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Using FACETM Technical Standard Features to Address Interoperability…, Snyder, Allport

Page 7 of 11

underlying measurement systems, it may

then be used to build adapters to other

standards. These adapters can bridge the

standards gap at both the upper and lower

levels of the OSI model. In addition, entities

and associations can be refactored to promote

modularity without changing the templates.

For example, the model in Figure 5 shows

an NGVA data definition (defined as an IDL)

that is imported through a guided reverse

engineering process to add semantic

meaning, such as FACE logical

measurements and assignment of measured

attributes to entities or associations in the

model. Below is an OMG IDL definition of

the data types, as specified in a standard like

NGVA. In the center and right are FACE

model entities and query/template that

generate a FACE template version of the IDL

that matches the data types and structures

from the IDL. The generated template view

matches the IDL in structure and the names

match the reverse-engineered schema, while

the queries tie the entities to an underlying

entity model. A similar process is possible to

tie FACE models to imported VICTORY or

other XSD schemas.

5. Relating the FACE Data Model to
Lower Levels of the OSI Model

Once the FACE data model is defined with

templates that closely relate to the needed

data formats, automated processes become

possible to build model-based data adapters

to allow other standards to communicate via

the FACE TSS. For instance, to do this with

VICTORY, one can first note that the

VICTORY specification does not levy an

API standard at the OSI application layer. An

application can be VICTORY compliant as

long as it is shown to implement VICTORY

service patterns and communicate via the

VICTORY data bus. Both conditions can be

satisfied by building a FACE TSS adapter

Figure 5: Example IDL from a FACE Data Model.

Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Using FACETM Technical Standard Features to Address Interoperability…, Snyder, Allport

Page 8 of 11

that communicates via VICTORY at the back

end and a conformant FACE TS API on the

front end. The FACE TS API is actually very

simple in concept. It presents 4 primary

interfaces to software that is communicating

via the FACE TSS:

• Send_Message to send a type-specific

message (for instance the Alerts Settings

message described above)

• Receive_Message to receive a type-

specific message, usually through some

form of a polling process under caller

control

• Register_Callback to register a function

that is called whenever a message arrives

• TS_Extended extends the callback

mechanism to allow a type-specific sender

and receiver to be paired. This is used to

support RPC service patterns where a

service sends a typed response

In a FACE environment, the system

integrator chooses technologies and software

modules to implement a given set of TSS

objectives. To enable a FACE UoP to ‘be’ a

VICTORY UoP would involve:

• Developing a TSS component that uses

the VICTORY data bus message format on

the wire and creates FACE TS APIs at the

Presentation/Application layer. This could

be done through a combination of auto

generation or generic model driven

software, depending on the capabilities of

the chosen TSS.

• Prescribing a UoP pattern that

implemented appropriate VICTORY

service patterns. This might, for instance,

‘wrap’ existing VICTORY implementation

logic into the FACE integrator code, so that

UoPs would send or receive VICTORY

Data Bus messages prepared using FACE

TS data types that were seamlessly

transformed to the appropriate wire format.

VICTORY service discovery and

negotiation would reside in the integrator

code, transparent to the UoPs

This strategy would have multiple benefits.

Once different endpoints were written to

FACE TS API standards, the VICTORY

Data Bus implementation usage could be

reduced and eventually eliminated, allowing

system integrators to use the more powerful

and abstract FACE TSS to integrate their

system. This would allow these new

VICTORY compliant applications to

interoperate with MOSA interfaces from

other standards, while supporting existing

VICTORY applications for as long as

needed.

6. Example VICTORY Adapter

To test this concept, we implemented a

VICTORY adapter to translate VICTORY

Data Bus Position and Orientation messages

from standard VICTORY XML-on-the-wire

to a FACE Transport Services (TSS)

implementation (Figure 6). The basic steps

for this effort were:

• We constructed a simple FACE UDDL

model for a ground vehicle with a position

sensor. This model was not specific to the

VICTORY design, but was generic in

nature.

• We used the FACE templating

mechanisms to construct a FACE template

that matched the elements of the VICTORY

Data Bus messages. The fields and

structure of this template were designed to

Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Using FACETM Technical Standard Features to Address Interoperability…, Snyder, Allport

Page 9 of 11

match the XML message structure, to

facilitate the planned adapter strategy.

• We employed a FACE TSS

implementation that included Type

Reflective capabilities, that supported the

use of digital schemas at runtime to allow

message structure contents to be understood

by an adapter component employed in the

FACE TSS.

• We built the adapter component with the

ability to parse the XML off the wire, and

to use the digital schema to create message

buffers using in the TSS format and send

them across the TSS middleware.

To test the approach, a virtual

environment was used that simulated a

vehicle sending VICTORY position

messaged using XML over UDP sockets –

a simplified VICTORY Data Bus

implementation (Figure 7). The adapter

was listened to these messages and bridge

them onto the FACE TSS. A FACE UoP

applications using Type Specific API calls

was written to receive and display the

position on an operator HMI. The

demonstration operated as expected and

showed the usefulness of the FACE model

driven approach and flexibilty of the FACE

and UDDL standards to adapt to the

interoperability needs of this system.

While this adapter was simple because the

message layouts were selected to be easy to

automate, this is not always the case.

Fortunately, there is an active community of

developers providing tools and solutions

that make this adaptation tractable.

The challenge of interoperability can be

met, for instance, by employing model-

driven Domain Specific Languages (DSLs)

that allow the digital model of the data and

relationships between system elements that

Figure 6: FACE-VICTORY Adapter Demonstration Architecture

Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Using FACETM Technical Standard Features to Address Interoperability…, Snyder, Allport

Page 10 of 11

require or provide the data to be modelled.

These models can then be used to facilitate

code generation and other smart adapter

strategies. Several commercial tools, such

as Skayl’s Phenom, exist to meet these

challenges, and are widely used to solve

domain interoperability problems in many

MOSA contexts across DoD.

7. Conclusion and Recommended
Approach

To effectively implement a strategy to make

FACE, VICTORY, NGVA, and other

standards interoperate, the following steps

can be followed:

• Employ FACE UDDL and targeted

UDDL construction tools to reverse

engineer existing data specifications (XSL,

IDL) into FACE models that match their

structure.

• Add any meta model constructs that

work with the FACE UDDL to enable

automated and generic adapters to be

constructed. These constructs allow the

interoperability to be model driven, and

these can be in a SysML tool or using

dedicated DSLs, preferably commercially

supported ones.

• Once suitable templates are constructed

to adapt to standards, refactor the entity

models to a common entity model structure

that reflects the domain.

• Build or adopt a TSS infrastructure that

is configurable and flexible using type-

aware technologies. Make smart generic

data adapters that handle interoperability

with key standards, and employ tools

designed for these purposes as necessary.

Figure 7: FACE-VICTORY Adapter providing Live Position on a FACE Digital Map

LVC Sim with

VICTORY

Interface

Proceedings of the 2023 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)

Using FACETM Technical Standard Features to Address Interoperability…, Snyder, Allport

Page 11 of 11

8. REFERENCES

[1] FACE™ Technical Standard, Edition 3.1

(C207), published by The Open Group,

July 2020; refer to:

www.opengroup.org/library/c207

[2] Elliott, L., Jenkins, S., Moore, M., and

Yee, Howell, “Potential for VICTORY

and FACE Alignment – Initial

Exploration of Data Interoperability and

Standards Compliance”, proceedings of

the Vehicle Electronics and Architecture

(VEA) and Ground Systems Cyber

Engineering (GSCE) Technical Session,

2019 NDIA Ground Vehicle Systems

Engineering and Technology Symposium,

August 2019

[3] Open Universal Domain Description

Language (C198), published by The Open

Group, July 2019; refer to:

www.opengroup.org/library/c198

[4] Hand, S., et.al., “Interface

Documentation Maturity Levels: An

Introduction“, proceedings of the Army

FACE TIM, October 2018

[5] Snyder, M., “FACE Data Modeling for

Software Developers”, proceedings of the

Army FACE TIM, September 2021

[6] Davis, J, et.al., “A Strategy for

Leveraging Domain Specific Data

Models”, proceedings of the Army FACE

TIM, October 2018

http://www.opengroup.org/library/c207
http://www.opengroup.org/library/c198

